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ABSTRACT

Data processing techniques and measuring protocol are very important parts of the multisensor systems
methodology. Complex analytical tasks like resolving the mixtures of two components with very similar
chemical properties require special attention. We report on the application of non-linear (artificial neural
networks, ANNs) and linear (projections on latent structures, PLS) regression techniques to the data
obtained from the flow cell with potentiometric multisensor detection of neighouring lanthanides in the
Periodic System of the elements (samarium, europium and gadolinium). Quantification of individual
components in mixtures is possible with reasonable precision if dynamic components of the response
are incorporated thanks to the use of an automated sequential injection analysis system. The average
absolute error in prediction of lanthanides with PLS was around 1 x 10~4 mol/L, while the use of ANNs
allows the lowering of prediction errors down to 2 x 10~ mol/L in certain cases. The suggested protocol
seems to be useful for other analytical applications where simultaneous determination of chemically

similar analytes in mixtures is required.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

There are a number of analytical applications that require quanti-
tative analysis of mixtures, where the constituents have a very similar
chemical nature. As an example, one can consider lanthanides
determination in various technological solutions or in PUREX (Pluto-
nium-Uranium Extraction) process raffinate of spent nuclear fuel
reprocessing. Being close neighbors in the Periodic System of the
elements, lanthanides have closely similar chemical properties and the
task of their simultaneous determination can be effectively handled
with “heavy” instrumental methods, such as e.g. ICP-MS (inductively
coupled plasma mass spectrometry). However, these ICP-based meth-
ods are usually hard to implement in on-line mode and they require
significant amount of consumables, skilled personnel and long sample
preparation. There is a need for simple and inexpensive methods
that could allow simultaneous quantification of several chemical
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substances of very analogous properties. One of the reasonable
alternatives for existing “heavy” methods could be electrochemical
sensors. There are a lot of reports in literature on the development of
potentiometric sensors for selective determination of lanthanides,
such as cerium [1,2], samarium [3,4], europium |[5,6], etc.,, but the
pH working range reported in these papers is usually around 4-8 pH
units. It is not quite clear which ions promote sensor response at these
pH level, since Me>* is only present in strongly acidic media. Besides
that the reported selectivity values of such sensors are usually rather
high (log Kmre < —2) even in the presence of neighboring lantha-
nides, and this is quite surprising taking into account very similar ionic
radii and chemical properties of lanthanides. The authors of these
papers usually do not discuss the nature of such outstanding perfor-
mance. In most of the cases the measurements are performed in
individual solutions of the lanthanides. There are reasonable doubts if
the reported data can be extrapolated to the real performance of the
sensors in complex mixtures. One of the possible ways for develop-
ment of fast and inexpensive methods for lanthanides detection is the
employment of a multisensor system approach [7]. The main idea of
this approach (also called as an electronic tongue) is to measure the
samples with an array of chemical sensors with high cross-sensitivity
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towards variety of analytes and to process the resulted unresolved
analytical signal from this array by means of multivariate statistics
techniques [8]. As an output from this system one can have both
qualitative and quantitative chemical information depending on the
scope of study and on the methods employed. This type of systems
was recently successfully applied for simultaneous determination of
rare earth metals (REs) concentrations in complex mixtures simulating
spent nuclear fuel reprocessing media [9]. As a further extension of
this approach it seems reasonable to try an application of such a
system in flow cell conditions. Besides the obvious advantage of
simple automation this type of measurement implementation has
another important issue — a possibility of dynamic potentiometric
measurements, i.e. one can track the evolution of the sensor response
in time, and this kinetic information can be used in data processing.
The shape of the sensor response curve in a time domain can contain
valuable chemical information about the sample and this information
is lost when only stationary signal of sensor is employed for process-
ing. It was shown that this approach is quite viable in other appli-
cations [10-12]. However, dynamic potentiometric data are more
complex in nature compared to the ordinary potentiometric signals
and pose a certain challenge from the data processing point of view.
One of the possible divisions of chemometric techniques (however
quite artificial) is to distinguish linear (e.g. principal component
analysis (PCA) and projections on latent structures (PLSs)) and non-
linear (e.g. artificial neural networks (ANNs) and support vector
machines (SVMs)) methods. Both of these data processing groups
are in use in the multisensor systems field. Furthermore, in [13] a wide
literature survey was performed which revealed that most of the
papers devoted to electronic tongues are mainly dealing with only
three data processing techniques: PCA, PLS and ANN. This confirms
that these methods are powerful and reliable for extracting valuable
chemical information from multisensor system's experimental data.
When quantitative chemical analysis is in sight both linear and non-
linear regression methods can be employed.

This paper is devoted to the comparison study of the linear and
non-linear regression techniques applied to the dynamic potentio-
metric data from double mixtures of chemically similar lanthanide
ions. As linear methods three different PLS modes were imple-
mented: ordinary PLS with stationary potentiometric signals as
input variables, PLS with the whole response curves unfolded over
time axis and multi-way PLS (nPLS) with time axis as a third
dimension in data (samples x sensors x time). As non-linear
methods, different approaches based on artificial neural networks
(ANNs) were evaluated including the use of steady state signal and
the compression of the dynamic profile employing the windowed
slicing integral (Int) method [14].

2. Experimental
2.1. Sensor preparation

The sensor array employed in this study consisted of eight
polymeric PVC-plasticized sensors described previously [9]. Active
compounds for sensor membranes were various neutral ligands
adopted from liquid extraction systems plus chlorinated cobalt
dicarbollide (CCD) as a cation-exchanger. All sensor membranes
contained 50 mmol/kg of a neutral ligand and 10 mmol/kg of CCD
(0.53 wt%). The details on active substances are given in Table 1.
Also each sensor membrane contained 33 wt% of poly(vinylchlor-
ide) (PVC), and the rest was of o-nitrophenyloctyl ether (NPOE) as
a solvent-plasticizer (both PVC and NPOE were Selectophore grade
from Fluka).

Sensor membranes were prepared according to the standard
procedure: weighted amounts of membrane components were
dissolved in freshly distilled tetrahydrofurane (THF) and poured

Table 1
Sensor membrane compositions.

Sensor Active substance Concentration
(Wit%)

s1 Tetraphenylmethylendiphosphine dioxide 2.08

s2 Phenyloctyl-N,N-di-i-butylcarbamoylmethylen 2.03
phosphine oxide

s3 1,9-Bis-(diphenylphosphynyl)-2,5,8-trioxanonane  2.67

s4 1,6-Bis-(benzylphenylcarbamoyl)-3-benzo-2,5- 2.78
oxahexane

s5 1,9-Bis-(diphenylcarbamoyl)-2,5,8-trioxanonane 2.62

s6 N,N,N’,N’-tetraoctyldiamide of diglycolic acid 2.90

s7 N, N'-diethyl-N, N’-di-p-tolyldiamide of dipicolinic 1.53
acid

s8 5,11,17,23-Tetra 6.67

(diethylcarbamoylethoxymethylcarboxamido)-
25,26,27,28-tetrapropoxycalix[4]arene

into a flat-bottomed Teflon beaker and left overnight for solvent
evaporation. Disks 4 mm in diameter and 0.5 mm thick were cut
from the parent membranes and covered on one side with a
suspension of fine graphite powder in a PVC-cyclohexanone
mixture. After drying for 24 h the membranes covered with solid
electric contact composition were mounted in the flow cell and
fixed in the channel with clamping plastic bodies. On the top of
each body there was a gold spot to provide electric contact. Thus
the sensor design employed in this study was similar to the coated
wire type. The resulting sensors were encoded as s1, s2,..., s8 in
the order of appearance above. The whole construction made of
the sensors mounted in the flow cell is shown in Fig. 1.

The flow cell was developed in the framework of FP6 WARMER
project and was produced by MedbrytSp. z 0.0 (Warsaw). This flow
cell consists of poly(methylmethacrylate) segments (PMMA) that
can be hermetically attached to each other to produce the flow
cell with necessary number of sensors. For this study we used
nine segments, eight for polymeric sensors and one for Ag/AgCl
reference electrode (MedbrytSp. z 0.0). Reference electrode was
mounted in the middle of the flow path to minimize electric
resistance of the system. The inner diameter of the flow path was
1 mm.

2.2. Potentiometric measurements

Potentiometric measurements were performed in a sequential
injection system (SIA) which provides the automated operation
and generation of RE metal mixtures, plus the measuring and
data acquisition stages. The SIA system was formed by two diffe-
rentiated parts: the fluidic system and the measurement system
[15,16].

The first part was the fluid system which consisted of an auto-
matic microburette (Crison 2030 microburette, Crison, Spain)
equipped with a 5 mL syringe (Hamilton, Switzerland), a holding
coil (5mx1mm id. PTFE tubing, Bioblock, France), a 8-way
Hamilton MVP valve (Hamilton, Switzerland) and a 7 mL Perspex
mixing cell (home built) with a magnetic stirrer. The multiport
valve is connected to the burette with the holding coil placed in
between. The burette is fed through a carrier solution reservoir. By
commanded sequence, the common port of the valve may access
any of the other ports which leads to the sample, standard stock
solutions, mixing chamber or sensor array by electrical rotation.
All the elements were connected together using low pressure
liquid chromatography connectors.

The second part was the measurement system that comprised
the sensor array, a reference electrode (miniaturized silver/silver
chloride electrode with a double junction) and an 8-channel
signal conditioning circuit connected to the data acquisition
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Fig. 2. Scheme of the SIA system: (1) buffer/carrier reservoir, (2) bi-directional
microburette, (3) holding coil, (4) 8 way valve, (5) stock solutions of considered
species, (6) mixing cell, (7) electrochemical cell with installed sensors and
reference electrode, (8) waste, and (9) computer controlling the whole system.

analog inputs (National Instruments NI6221 Multifunction DAQ,
TX, USA). emf Readings were recorded with 0.1 s resolution in time
domain.

The whole system was controlled by a PC using a virtual
instrument developed in Labview [15], where the other active
elements were commanded through RS-232 communication lines.
The detailed scheme of the employed system is given in Fig. 2.

2.3. Samples

We analyzed the response of the multisensor array in flow
conditions in RE double mixtures. Three types of double mixtures
were analyzed: Sm-Eu, Sm-Gd, and Eu-Gd. The motivation for
this choice was in immediate vicinity of these elements in the
Periodic system of the elements. The concentrations of cations A
(primary ion) were changed in the range from 2.44x 1077 to
1 x 1073 M, while the content of cations B (interfering species)
was varied in the range from 125x10"% to 1.25x 1073 M;
example of spatial distribution along the experimental space can
be seen in Fig. 3. One can observe that increasing gadolinium con-
centration strongly suppresses the response of the sensor towards
europium due to the lack of sensor selectivity. 42 mixtures of each
of the three types were analyzed leading to 126 samples in total.
These concentration ranges are generally relevant to the techno-
logical solutions of spent nuclear fuel reprocessing process

-36

log [Gd"'] o 4.0 %

Fig. 3. 3D surface plot corresponding to the response of sensor 4 employed in the
array in Eu>*-Gd>* mixtures.

o0 sensor 1
O sensor2|
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Fig. 4. Typical view of the sensor response curves in lanthanide mixtures.

[17]. The pH values of all solutions were fixed at 2 by nitric acid
addition.

2.4. Data processing

One of the main ideas of this research is to make use of the
dynamic part of potentiometric sensor array response in flow
measurement conditions. The shape of the response curve can
contain useful chemical information which could help to analyze
the content of individual lanthanides in mixtures. Fig. 4 shows the
typical view of the sensor responses curves in time. Traditionally
in potentiometry and potentiometric multisensor systems only
one emf value for each sensor is used for data processing - that
from the plateau when sensor readings are already equilibrated
(e.g. at the 50th second of measurements in Fig. 4). In this study
we employed the whole response curve for processing, i.e. instead
of the one thermodinamical equilibrium emf value, we used the
whole transient signal (as an example consider 0-50 s interval in
Fig. 4). It can be seen that the slopes and the amplitudes of the
signals are different for different sensors and this additional
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Table 2

Detailed configuration of the ANN architecture for the different optimized ANN models.

ANN with stationary data

Int-ANN dynamic model

Sm-Eu Sm-Gd Eu-Gd Sm-Eu Sm-Gd Eu-Gd
Type of network Feedforward, backpropagation with multiple output
Training algorithm Bayesian regularization
Momentum p=0.4
Learning rate a=0.01
Performance goal 0.3
Number of neurons in input layer 8 8 8 80 80 80
Number of hidden layers 1 1 1 1 1 1
Number of neurons in hidden layer 5 4 4 7 4 5
Transfer function in hidden layer logsig logsig logsig logsig tansig logsig
Number of neurons in output layer 2 2 2 2 2 2
Transfer function in output layer purelin tansig purelin purelin purelin purelin
Total RMSE train subset 2.7x107° 2.8x107° 21x107° 2.5%x107° 29x107° 2.7x107°
Total RMSE test subset 42x107° 5.6x 107 51x107° 29x107° 33x107° 45x107°

information can be potentially useful for data processing, in the
sense that kinetics in the response may help in the final resolution.

Both linear (partial least squares, PLS) and non-linear (artificial
neural networks, ANNs) algorithms were applied for data proces-
sing. PLS processing was done with the Unscrambler 9.7 software
(CAMO, Norway), while the rest of the chemometric processing
was done by specific routines in MATLAB 7.1 (MathWorks, Natick,
MA) written by authors, using Neural Network toolbox (v.4.0.6).

The details on the PLS algorithm are widely available in
literature, see e.g. Ref. [18]. Three different modes of PLS calibra-
tion were employed: (1) ordinary PLS with a single emf value for
each of the sensors (data matrix 42 samples X 8 sensors), for this
purpose three last points in the response curve over 100 s were
averaged, (2) PLS with the emf reading unfolded along the time
axis (data matrix 42 samples x 3208 variables (8 sensors x 401
time values)), and (3) nPLS with the three way array (42
samples x 8 sensors x 401 time values). Initial data were mean
centered in sample direction before the PLS processing. Regression
models were validated with two different techniques: full cross-
validation and classical test set with 11 samples randomly
selected. Root mean square error (RMSE) values were calculated
for all validation protocols.

The first step in building the ANN model is selecting the
topology of the neural network used. Given the difficulties to
predict the optimum configuration in advance, this consists of a
trial-and-error process where several parameters (training algo-
rithm, number of hidden layers, number of neurons, transfer
functions, etc.) are fine-tuned in order to find the best configuration
that optimizes the performance of the neural network model [19].

For this proposal, a systematic study of the number of neurons in
the hidden layer and combinations of functions in both hidden and
output layers were tested. In our case, we varied the number of
neurons in the hidden layer between 1 and 12, and evaluated the
use of combinations of four different transfer functions (i.e. logsig,
purelin, tansig and satlins) both in the hidden and output layers.

For the selection of the optimal topology, ANN models were
trained with 74% of the data, using the remaining 26% (testing
subset) to characterize the accuracy of the quantification model
and obtain unbiased estimation of model fitness. Subsequently,
comparison graphs of predicted vs. expected concentrations for
the two determined species were built to easily check the
performance of the ANN model. After this step the best config-
uration was chosen taking into account which topology gave
better slope, intercept and correlation coefficient values (i.e. close
to ideal values of 1, 0 and 1, respectively).

For the dynamic treatment, the transient response of each
sensor was compressed employing the windowed slicing integral

(Int) method [14]. This method takes into account the area under
the transient curve, which can also be considered as the scaled
average of the curve data points. The idea is to somehow capture
information about the waveform characteristics. Hence, the tran-
sient response curve is divided into k sections and the area under
each section is used as input coefficient for the modeling stage.
The number of sections (k) into which voltammogram is divided is
arbitrary and it depends on the response profile of the data; by
increasing k, the original information in the voltammetric data is
best reproduced, but at the expense of the compression ratio.
Thus, a compromise between the compression ratio and the signal
reproduction must be taken into account. In our case, based on a
preliminary optimization a value of k=10 was chosen. After this
compression procedure, extracted coefficients were used as inputs
of the artificial neural network (ANN) model, specifically, the
values corresponding from 2.6 s to 12.5's, compromising a total
of 80 values. The initial points were discarded since they were only
carrier signals, while the inclusion of longer recording time does
not reflect in any improvement in the model behavior; then, only
this profile was further compressed employing the Int method.

The parameters of the optimized ANN configurations are given in
Table 2.

3. Results

As a first approach to the problem we determined the sensitiv-
ities of the sensors in the individual lanthanide solutions. Sensi-
tivity values (mV/dec) were calculated for the linear parts of the
calibration curves in the range of 10~°-10~3 M of lanthanide in
nitric acid with pH 2. The results are shown in Fig. 5. As can be
seen there is a rather subtle difference in the sensor responses
towards samarium, europium and gadolinium, which is obviously
due to the fact that these lanthanides are closest neighbors in the
Periodic System of the elements. However, when comparing
the response patterns of e.g. sensor 3 and sensor 7 one can see
that the direction of the sensitivity change is different with the
growth of lanthanide atomic number. These small differences
together with multivariate data processing approach give a chance
to resolve the complex mixtures where these metals are present
simultaneously.

At the next stage of the experiment we analyzed three types
of lanthanides double mixtures with the potentiometric sensor
array in the flow cell. The data from the instrument were arranged
into the matrices and processed with PLS and ANN approaches.
Let us first consider the results of three different modes of PLS
processing.



230 D. Kirsanov et al. / Talanta 119 (2014) 226-231

30

Sensitivity, mV/dec

©

Sensors

Fig. 5. Lanthanide sensitivities of the sensors.

3.1. Linear PLS regression

Table 3 shows the metrics of the regression models constructed
with the potentiometric data in lanthanide double mixtures
Sm-Eu, Sm-Gd, and Eu-Gd. Only the validation related numbers
are shown for brevity.

It can be seen that three different linear PLS approaches
produce very similar results. No substantial difference can be
observed in parameters of the regression models constructed with
stationary emf values, whole response curve and 3 way data array.
In general linear PLS models are able to quantify the content of
lanthanides in double mixtures with errors around 1 x 10~* mol/L.
This means the concentrations below 10~ mol/L cannot be
reliably measured with the developed multisensor system and
PLS modeling and the working range of the array in this case is
10~4-10~> mol/L of lanthanides. From the chemical point of view
it would be reasonable to expect that the lowest prediction errors
will be observed for the mixtures Sm-Gd, since these elements are
further away from each other in the Periodic System than all other
combinations. However, the variation in RMSE values does not
support this suggestion. Another interesting observation is that
RMSE values for two different validation modes (full cross-
validation and independent test set) do not differ significantly,
although cross-validation is widely criticized for the tendency to
produce over-optimistic results since it employs the same samples
for modeling and validation [20,21]. This is not the case with the
data set under study.

3.2. ANN results

As it was done in the case of PLS models, two types of ANNs
models were built, employing the stationary emf values and
employing the dynamic components of the signal. However, the
modeling of the dynamic profile required a preprocessing step for
reducing the large dimensionality of the input data prior to
building the ANN model [22]. As stated, in this case, reduction of
the large data generated for each sample was achieved by means
of the windowed slicing integral (Int) method [14], which allowed
the reduction of signals from each sensor down to 10 coefficients
without any loss of relevant information; attaining a compression
ratio of 90%. Then, the obtained coefficients were used to build
a model that allows the prediction of the double mixtures
concentrations.

Table 4 summarizes the results obtained with different models
for the testing subset. As can be seen, reasonably good prediction

Table 3

The parameters of PLS regression models in prediction of individual lanthanide
content in double mixtures. RMSECV is an error in full cross-validation, RMSEV is
the error in test set of the 11 randomly chosen samples.

Mixture, element Slope Offset (molL~1) R? RMSECV  RMSEV test

set (mol L")

PLS stationary data

Sm-Eu

Sm 0.892 14x10°° 0896 11x10~* 85x10°°
Eu 0967 24x10°° 0961 8.0x107° 6.0x10°>
Sm-Gd

Sm 0949 94x10°° 0942 84x107° 88x10~°
Gd 0.967 2.3x10°° 0954 87x107> 57x10°°
Eu-Gd

Eu 0972 56x10°° 0961 69x107° 7.9x10°°
Gd 0926 51x10°° 0927 11x10"% 75x10°°
PLS dynamic response

Sm-Eu

Sm 0.906 13x10°° 0906 11x10~% 11x10~*
Eu 0959 2.5x10°° 0966 75x10"% 89x10~*
Sm-Gd

Sm 0959 6.1x10°° 0954 75x107° 9.0x 10>
Gd 0971 2.5x10°° 0958 84x107° 61x10°°
Eu-Gd

Eu 0947 1.0x10°° 0963 6.7x107° 61x10°°
Gd 0963 31x10°° 0933 11x10~% 59x10~°
nPLS dynamic response

Sm-Eu

Sm 0.891 13x10°° 0.897 11x10~* 11x10~*
Eu 0971 2.2x10°° 0969 70x107° 70x10°°
Sm-Gd

Sm 0941 94x10°° 0936 86x107° 91x10°°
Gd 0971 22x10°° 0953 86x107° 71x10~°
Eu-Gd

Eu 0.957 70x10°° 0961 73x107° 74x10°°
Gd 0937 45x10°° 0927 1.0x10~% 65x10~°

is attained for all the cases with regression parameters close to the
ideal values. Additionally, it can be observed that better perfor-
mance was attained when using the dynamic potentiometric
profile. This fact can be explained by the incorporation of the
whole response profile and the usage of richer departure informa-
tion by the model. Slight difference in dynamic response profiles
for different RE thus may contribute positively to the precision of
the models.

3.3. Comparison of linear and non-linear methods

As shown in Tables 3 and 4, in both cases (linear and non-linear
methods), satisfactory trend is obtained for different mixtures.
However, despite the low and similar RMSE values obtained
between the different modeling methods, somewhat better results
were obtained with the use of ANNs, and more specifically with
the incorporation of a dynamic profile into the modeling stage.
While average error in prediction with PLS was around
1x10"*mol/L, the use of ANN allows for lowering this error
down to 2 x 107° mol/L in certain cases. These results are con-
sistent with the expected ones and with the previous experience
in similar cases [23]. Compared with PLS, ANN is a more flexible
modeling methodology, since both linear and non-linear functions
can be used (or combined) in the processing units, thus they suit
well for use with non-linear sensor responses (Fig. 3). This also
allows more complex relationships between a high-dimensional
descriptor space and the given retention data, and may lead to
better predictive power of the resulting ANN model compared
with other linear methods. The employment of the dynamic
potentiometric profile does not add to the precision of PLS models
while non-linear ANNs accept this additional information readily
and prediction power of the ANN models increase almost for all of
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Table 4

The parameters of ANN regression models in prediction of individual lanthanide
content in double mixtures. RMSEV is an error in test set of the 11 randomly chosen
samples.

Mixture, element Slope Offset (molL~") R? RMSEYV, test set (mol L~ 1)

ANN with stationary data

Sm-Eu

Sm 0.861 112x107> 0.865 3.31x107°
Eu 0984 -274x107° 0994 491x10°
Sm-Gd

Sm 1.061 3.94x10°° 0.692 6.45x107°
Gd 0.962 228x107° 0.987 4.70x107°
Eu-Gd

Eu 1.028 —127x107° 0.813 4.45x107°
Gd 0.993 1.04x 1077 0.980 5.69x107°
Int-ANN dynamic model

Sm-Eu

Sm 0.985 4.43x10°° 0.898 3.02x107°
Eu 1.016 —1.36x107° 0.995 2.89x10°°
Sm-Gd

Sm 0.994 6.00x10°° 0954 2.04x107°
Gd 0.954 2.11x107° 0.991 422x107°
Eu-Gd

Eu 1.048 311x10°° 0.816 4.54x107°
Gd 0.964 4.93x107° 0.989 4.56x 107>

the studied mixtures. It must be pointed out however, that the
results obtained in this study cannot be considered as a general
rule. The choice of the processing protocol must be done indivi-
dually for each particular case.

4. Conclusion

In certain cases a severe lack of sensor selectivity among
chemically similar analytes can be compensated with multisensor
methodology and careful choice of data treatment procedures.
We have demonstrated here a successful application of potentio-
metric sensor array for quantitative resolution of several RE double
mixtures. Particular challenge of this application is in the almost
identical chemical properties of samarium, europium and gadoli-
nium ions; thus a design of sharply selective ligands for these
metals is hardly possible. Nevertheless their individual analysis
in mixtures can be performed by means of “cheap-and-dirty”
potentiometric sensor array with sequential injection analysis
methodology. A careful approach for data treatment allows the
extraction of useful analytical information from unresolved signals
of sensors. ANN with the windowed slicing integral methodology
outperforms PLS methods in the studied case obviously due to
inherent capability of ANN to handle effectively non-linear

responses. The established protocol can be of certain use in other
applications requiring individual analysis of similar substances in
mixtures (e.g. amino acids, polyphenolic compounds, etc.).
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